Home
Class 11
MATHS
sqrt(x^2-4)-(x-2)=sqrt(x^2-5x+6)...

`sqrt(x^2-4)-(x-2)=sqrt(x^2-5x+6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of the equation sqrt(x^(2)-16)-(x-4)=sqrt(x^(2)-5x+4)

Solve sqrt(x^(2)+4x-21)+sqrt(x^(2)-x-6)=sqrt(6x^(2)-5x-39)

Solve the following: (sqrt(x^2-5x+6)+sqrt(x^2-5x+4))^(x/2)+(sqrt(x^2-5x+6) - sqrt(x^2-5x+4))^(x//2)=2^((x+4)/4)

Solve the following: (sqrt(x^2-5x+6)+sqrt(x^2-5x+4))^(x/2)+(sqrt(x^2-5x+6) - sqrt(x^2-5x+4))^(x//2)=2^((x+4)/4)

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

Solve the following: (sqrt(x^(2)-5x+6)+sqrt(x^(2)-5x+4))^((x)/(2))+(sqrt(x^(2)-5x+6)-sqrt(x^(2)-5x+4))^(x/2)=2^((x+4)/(4))

Solve: sqrt(x^2-16)-sqrt(x^2-8x+16)=sqrt(x^2-5x+4) .