Home
Class 12
MATHS
If y = 1/x , then the value of (dy)/(sqr...

If `y = 1/x` , then the value of `(dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If : y=(1)/(x)," then: "(dy)/(sqrt(1+y^(4)))+(dx)/(sqrt(1+x^(4)))=

If x=(1-sqrt(y))/(1+sqrt(y)) then (dy)/(dx) is equal to

If y = 1/x then (dy)/(dx)+sqrt((1+y^4)/(1+x^4))=

If x sqrt(1+y)+y sqrt(1+x)=0 then the value of (dy)/(dx) is -

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

Solve : (dy)/(dx) sqrt(1+x+y) =x+y-1

x = (1-sqrt(y))/(1+sqrt(y)) rArr(dy)/(dx) is equal to

Solve (dy)/(dx)=sqrt(4x+2y-1)