Home
Class 11
MATHS
If the sum of the series sum(n=1)^(oo)((...

If the sum of the series `sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n` is finite where `|x|>=1` and `a>0` then range of values of a

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of the series sum_(k)^(i) (sec^(-1)sqrt(|x|) - cosec^(-1)sqrt(|x|)/(pi a)) is finite where |x|>=1 and a>0 then range of values of a is

The sum of the series sum _(n=1) ^(oo) sin ((n!pi)/(720)) is

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

sum_(n=0)^( oo) (-1)^(n) x^( n+1)=

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

sum_ (n = 0) ^ (oo) (- 1) ^ (n) x ^ (n + 1) =

The value of sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1)x)) is -