Home
Class 12
MATHS
If A,B,C are the angles of triangle ABC,...

If A,B,C are the angles of triangle ABC, then the minimum value of `|{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}|` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If A,B,C are the angles of a triangle, prove that the maximum value of cos A cos B cos C "is" (1)/(8)

If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

If A,B and C are the angles of a triangle, then |[-1+cos B, cos C+ cos B, cos B],[cos C+ cos A,-1+cos A, cos A],[-1+cos B,-1+cos A,-1]|

If A, B, C are interior angles of triangle ABC, prove that :- cos^2(A/2)+cos^2((B+C)/2)=1 .

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is