Home
Class 12
MATHS
(1)/(sqrt(1-e^(2x)))...

(1)/(sqrt(1-e^(2x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(2x))/(sqrt(1-e^(2x)))dx

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

int(dx)/(sqrt(1-e^(2x)))=?

Evaluate the integrals: int(e^xdx)/(sqrt(1-e^(2x)))

If y=sqrt((1+e^(x))/(1-e^(x))) , show that (dy)/(dx)=e^(x)/((1-e^(x))sqrt(1-e^(2x))) .

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

int e^(x)[(1)/(sqrt(1+x^(2)))+(1-2x^(2))/(sqrt((1+x^(2))^(5)))]dx

int (e ^ (x) dx) / (1 + e ^ (2x)) sqrt (1-e ^ (2x)))