Home
Class 11
MATHS
" If "e^(y)(x+1)=1" ,then prove that : "...

" If "e^(y)(x+1)=1" ,then prove that : "(d^(2)y/dx^(2))=(dy/dx)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,