Home
Class 12
MATHS
(dy)/(dx)=x sin^(2)x+(1)/(x log x)...

(dy)/(dx)=x sin^(2)x+(1)/(x log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solution of the Differential Equation : (dy/dx) - x sin x = 1/(x log x)

Solve the following differential equations (dy)/( dx) - x^2 sin^2x = (1)/( x log x)

If y = (x sin^(-1) x)/(sqrt(1 - x^2)) + "log" sqrt(1 - x^2) , prove that (dy)/(dx) = (sin^(-1)x)/((1 - x^2)^(3//2))

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

x log x(dy)/(dx) + y = (2)/(x)log x

x log x(dy)/(dx) + y = (2)/(x)log x

Find(dy)/(dx) for y=x sin x log x

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))