Home
Class 9
MATHS
[" (iii) "p(x)=kx^(2)-sqrt(2)x+1],[" 4.ग...

[" (iii) "p(x)=kx^(2)-sqrt(2)x+1],[" 4.गुणखंड ज्ञात कीजिए : "],[" (i) "12x^(2)-7x+1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise 12x^(2)-7x+1

Factorise : - 12x^(2)-7x+1

Factorise : 12x^(2) - 7x + 1

Find the value of k, if x-1 is a factor of p(x) in each of the following cases : (i) p(x)=x^(2)+x+k " " (ii) p(x)=2x^(2)+kx+sqrt(2) (iii) p(x)=kx^(2)-sqrt(2)x+1 " " (iv) p(x) =kx^(2)-3x+k

Find the value of k, if x-1 is a factor of p(x) in each of the following cases : (i) p(x)=x^(2)+x+k " " (ii) p(x)=2x^(2)+kx+sqrt(2) (iii) p(x)=kx^(2)-sqrt(2)x+1 " " (iv) p(x) =kx^(2)-3x+k

Find the value of k , if x-1 is a factor of p(x) in each of the following cases : (i) p(x)=x^(2)+x+k (ii) p(x)=2x^(2)+kx+sqrt(2) (iii) p(x)=kx^(2)-sqrt(2)x+1 (iv) p(x)=kx^(2)-3x+k

Factorise : 12x^2-7x+1 .

Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial: (i) p(x) = 4x^(3) + 8x + 8x^(2) +7, g(x) =2x^(2) -x+1 , (ii) p(x) =x^(4) - 5x -2, g(x) =2-x^(2) , (iii) p(x) = 13x^(3) -19x^(2) + 12x +14, g(x) =2-2x +x^(2)