Home
Class 12
MATHS
[" If domain of "y=f(x)" is "[-4,3]" ,th...

[" If domain of "y=f(x)" is "[-4,3]" ,then domain of "],[g(x)=f(|[x]|)" is,where "[.]" denotes greatest integer "],[" function "],[[" (1) "(-3,4)," (2) "[-3,4)],[" (3) "[-5,3]," (4) "[-4,3]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function: