Home
Class 12
MATHS
Prove that tan^(-1)((cosx)/(1+sinx))=(pi...

Prove that `tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Show that tan^-1(frac(cosx)(1-sinx))=pi/4+x/2

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx)) )=x/2, x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

tan^(-1)((cosx+sinx)/(cos x-sinx))

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .