Home
Class 11
MATHS
cos18^(@)-sin18^(@)=sqrt(2)sin27^(@)...

cos18^(@)-sin18^(@)=sqrt(2)sin27^(@)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@) , then x=

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

If cos18^(@)-sin18^(@)=sqrt(2)sinA . Then value of tan5A+cot5A+sin5A+cos5A is :

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0