Home
Class 12
MATHS
Find common tangent of the two curve y^(...

Find common tangent of the two curve `y^(2)=4x` and `x^(2)+y^(2)-6x=0` (a) `y=(x)/(3)+3` (b) `y=((x)/(sqrt(3))-sqrt(3))` (c) `y=(x)/(3)-3` (d) `y=((x)/(sqrt(3))+sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If x=(2)/(sqrt(3)-sqrt(5)) and y=(2)/(sqrt(3)+sqrt(5)) , then x+y = _______ .

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

Solve (2)/(sqrt(x))+(3)/(sqrt(y))=2 ;(4)/(sqrt(x))+(3)/(sqrt(y))=2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

The equation of the common tangent touching the circle (x-3)^(2)+y^(2)=9 and the parabola y^(2)=4x above the x -axis is sqrt(3)y=3x+1 (b) sqrt(3)y=-(x+3)sqrt(2)y=x+3(d)sqrt(3)y=-(3x-1)

The equation of the line that touches the curves y=x|x| and x^2+(y-2)^2=4 , where x!=0, is (a)y=4sqrt(5)x+20 (b)y=4sqrt(3)-12 (c)y=0 (d) y=-4sqrt(5)x-20

Find y ' , if (a) y=5x^(2//3)-3x^(5//2)+2x^(-3) (b) y=(a)/(3sqrt(x))^(2)-(b)/(x^(3)sqrt(x) (a,b constants )

Area common to the curves y=sqrt(x) and x=sqrt(y) is (A) 1 (B) 2/3 (C) 1/3 (D) none of these