Home
Class 11
PHYSICS
A wave is travelling along positive x- d...

A wave is travelling along positive x- direction with velocity `2m//s`.
Further, `y(x) equation of the wave pulse at `t=0` is
`y=(10)/(2+(2x+4)^(2))`
(a) From the given information make complete `y(x, t)` equation.
(b) Find `y(x)` equation at `t = 1s`

Promotional Banner

Similar Questions

Explore conceptually related problems

A wave pulse is travelling positive x direction with a speed of 4.5 m/s. At time t= 0, the wave pulse is given as y= 6/(x^2-3) . Here x and y are in metre. Then which function represents the equation of pulse just after 2 second?

A wave pulse is travelling on a string at 2m//s along positive x-directrion. Displacement y of the particle at x = 0 at any time t is given by y = (2)/(t^(2) + 1) Find Shape of the pulse at t = 0 and t = 1s.

At time t=0 , y(x) equation of a wave pulse is y=(10)/(2+(x-4)^(2)) and at t=2s , y(x) equation of the same wave pulse is y=(10)/(2+(x+4)^(2)) Here, y is in mm and x in metres. Find the wave velocity.

At time t=0 , y(x) equation of a wave pulse is y=(10)/(2+(x-4)^(2)) and at t=2s , y(x) equation of the same wave pulse is y=(10)/(2+(x+4)^(2)) Here, y is in mm and x in metres. Find the wave velocity.

The displacement function of a wave travelling along positive x-direction is y =(1)/(2 + 3x^(2))at t=0 and by y = (1)/(2) + 3(x - 2)^(2)) at t = 2 s , where y and x are in metre. The velocity of the wave is

The displacement function of a wave travelling along positive x-direction is y =(1)/(2 + 3x^(2))at t=0 and by y = (1)/(2) + 3(x - 2)^(2)) at t = 2 s , where y and x are in metre. The velocity of the wave is

At t=0,a transverse wave pulse travelling in the positive x direction with a speed of 2 m//s in a wire is described by the function y=6//x^(2) given that x!=0 . Transverse velocity of a particle at x=2 m and t= 2 s is