Home
Class 12
MATHS
समतल x+2y +3z -6=0 पर अभिलम्ब एकक (या मा...

समतल `x+2y +3z -6=0` पर अभिलम्ब एकक (या मात्रक ) सदिश ` (1)/( sqrt( 14))hati +(2)/( sqrt( 14))hatj +(3)/(sqrt( 14))hatk ` है|

Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector normal to the plane x + 2y +3z-6 =0 is (1)/(sqrt(14)) hati + (2)/(sqrt(14))hatj + (3)/(sqrt(14))hatk.

The unit vector normal to the plane x + 2y +3z-6 =0 is (1)/(sqrt(14)) hati + (2)/(sqrt(14))hatj + (3)/(sqrt(14))hatk.

State true or flase for the following statements : A unit normal vector to the plane x + 2y + 3 z - 6 = 0 is (1)/(sqrt(14)) hat(i) + (2)/(sqrt(14)) hat(j) + (3)/(sqrt(14)) hat(k) .

Magnitude of the vectors 2/(sqrt(3))hati+2/(sqrt(3))hatj+2/(sqrt(3))hatk is equal to

Magnitude of the vectors 1/(sqrt(3))hati+1/(sqrt(3))hatj+1/(sqrt(3))hatk is equal to

The unit vector normal to the plane x+2y+3z-6=0 is (1)/(sqrt14)hati+(2)/(sqrt14)hatj+(3)/(sqrt14)hatk

The unit vector normal to the plane x + 2y + 3z - 6 = 0 is (1)/(sqrt(14))bari+(2)/(sqrt(14))barj+(3)/(sqrt(14))bark .

Write down the magnitude of each of the following vectors : (i) veca = hati + 2hatj + 5hatk , (ii) vecb = 5hati - 4hatj - 3hatk (iii) vecc = (1/(sqrt(3))hati - (1)/(sqrt(3)) hatj + 1/(sqrt(3))hatk) , (iv) vecd = (sqrt(2)hati + sqrt(3)hatj - sqrt(5) hatk)

The direction-cosines of the vector hati + 2 hatj + 3 hatk are lt (1)/(sqrt(14)), (2)/(sqrt(14)),(3)/(sqrt(14)) gt

If (2+sqrt(3))^(x)+(2-sqrt(3))^(x)=14 then x=