Home
Class 13
MATHS
[" If "|z|=1" and "omega=(z-1)/(z+1)" (w...

[" If "|z|=1" and "omega=(z-1)/(z+1)" (where "z!=-1)," then "Re(omega)" is "],[[" (a) "0," (b) "-(1)/(|z+1|^(2))],[" (c) "|(z)/(z+1)|*(1)/(|z+1|^(2))," (d) "(sqrt(2))/(|z+1|^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :

If abs(z)= 1 and omega = frac{z-1}{z+1} (where z != -1 ), the Re(omega) is

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =