Home
Class 10
MATHS
If x=asec thetacos phi, y= bsec thetasin...

If x=asec `thetacos phi`, y= bsec `thetasinphi`,then find the value of `(x^(2))/(a^(2))+(y^(2))/(b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`sec^(2)theta`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    OSWAAL PUBLICATION|Exercise TOPIC-2 TRIGONOMETRIC IDENTITIES (SHORT ANSWER TYPE QUESTION)|7 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAAL PUBLICATION|Exercise TOPIC-2 TRIGONOMETRIC IDENTITIES (LONG ANSWER TYPE QUESTIONS-I)|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAAL PUBLICATION|Exercise TOPIC-2 TRIGONOMETRIC IDENTITIES (MULTIPLE CHOICE QUESTIONS)|12 Videos
  • CONSTRUCTIONS

    OSWAAL PUBLICATION|Exercise TEXTBOOK CORNER (EXERCISE 6.2) |1 Videos
  • KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD (MODEL QUESTION PAPER)

    OSWAAL PUBLICATION|Exercise QUESTION|42 Videos

Similar Questions

Explore conceptually related problems

If x=a sin theta and y=b tan theta , then find the value of (a^(2))/(x^(2))-(b^(2))/(y^(2))

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

Locus of the point of intersection of the tangents at the points with eccentric angles phi and (pi)/(2) - phi on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is

If y=m x+c is a tangent to (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 then b^(2) =

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (x^(0), y^(0)).

If sin 2 x=n sin 2 y then the value of (tan (x+y))/(tan (x-y))=

If x+y = 12, then the minimum value of x^(2) + y^(2) is

If x = asec^(2) theta, y = atan^(2)theta , then (d^(2)y)/(dx^(2))

For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^(2)))/(xy)

If (x-2,y+3)=(5,-6) , then find the values of x and y ?