Home
Class 9
MATHS
Prove that: 1/(1+x^(a-b))+1/(1+x^(b-a))=...

Prove that: `1/(1+x^(a-b))+1/(1+x^(b-a))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Solve: 1/(1+x^(a-b))+1/(1+x^(b-a))=?

Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

Find the value of (1)/(1+x^(a-b))+(1)/(1+x^(b-a))

Simplify: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Show that: 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+\ x^(a-c))=1

If the lines a x+y+1=0,x+b y+1=0 and x+y+c=0 are concurrent (a!=b!=c!=1) , prove that 1/(1-a)+1/(1-b)+1/(1-c)=1 .