Home
Class 10
MATHS
If A=((costheta, 0), (0, costheta)), B=(...

If `A=((costheta, 0), (0, costheta)), B=((sintheta, 0), (0, sintheta)]` then show that `A^(2)+B^(2)=I`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Fill in the blanks : If cos 2 theta = 0, then |(0, costheta, sintheta),(costheta, sintheta, 0),(sin theta, 0, costheta)|^2 =……….

Evaluate : |(2costheta, -2sintheta),(sintheta, costheta)| .

If A=[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)] , then adj A equals to

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

Evaluate |(2costheta,-2sintheta),(sintheta,costheta)|

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

costheta -sintheta -cottheta +1=0

|{:(2costheta,1,0),(1,2costheta,1),(0,1,2costheta):}|=(sin4theta)/(sintheta)[thetanen pi]