Home
Class 12
MATHS
If the circle x^(2) + y^(2) = 9 touches ...

If the circle `x^(2) + y^(2) = 9` touches the circle `x^(2) + y^(2) + 6y + c = 0` internally, then c is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Circle x ^(2) + y^(2)+6y=0 touches

Circle x ^(2) + y^(2)+6y=0 touches

If the circle x^(2) + y^(2) + 8x - 4y + c = 0 touches the circle x^(2) + y^(2) + 2x + 4y - 11 = 0 externally and cuts the circle x^(2) + y^(2) - 6x + 8y + k = 0 orthogonally then k =

If the circles x^(2) + y^(2) = k and x^(2) + y^(2) + 8x - 6y + 9 = 0 touch externally, then the value of k is

If the circle x^(2)+y^(2)+8x-4y+c=0 touches the circle x^(2)+y^(2)+2x+4y-11=0 externally and cuts the circle x^(2)+y^(2)-6x+8y+k=0 orthogonally then k

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

If the circles x^(2) +y^(2) = a and x^(2) + y^(2) - 6x - 8y + 9 = 0 touch externally then a =

If line 3x - y + c = 0 touches circle x^(2) + y^(2) - 2x + 8y - 23 =0 , then c =

If the chord of contact of tangents from a point on the circle x^(2) + y^(2) = a^(2) to the circle x^(2)+ y^(2)= b^(2) touches the circle x^(2) + y^(2) = c^(2) , then a, b, c are in-

The circle x ^(2) + y ^(2) =9 is contained in the circle x ^(2) + y ^(2) - 6x - 8y + 25=c^(2) If