Home
Class 11
MATHS
if p and q are non zero real numnbers an...

if p and q are non zero real numnbers and `alpha^3+beta^3=-p` `alpha beta =q` then a quadratic equation whose roots are `alpha^2/beta, beta^2/ alpha` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a and b are non-zero real numbers and alpha^(3)+beta^(3)=-a,alpha beta=b then the quadratic equation whose roots are (alpha^(2))/(beta),(beta^(2))/(alpha) is

IF alpha + beta =- 2 and alpha ^3 + beta ^3 =- 56 , then the quadratic equation whose roots are alpha and beta is

Q. Let p and q real number such that p!= 0 , p^2!=q and p^2!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Q. Let p and q real number such that p!= 0 , p^2!=q and p^2!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Q. Let p and q real number such that p!= 0 , p^2!=q and p^2!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Let p and q real number such that p!= 0 , p^3!=q and p^3!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Let p and q real number such that p!= 0 , p^3!=q and p^3!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

If alpha+beta=5 and alpha^(3) +beta^(3)=35 , find the quadratic equation whose roots are alpha and beta .