Home
Class 12
MATHS
[" 11.Solution of the equation "tan^(-1)...

[" 11.Solution of the equation "tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x" is "],[qquad [" 1."x=0," 2."x=+-(1)/(2),0," 3."x=+-(1)/(3)," 4.None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

Solve for x, tan^(-1)(x-1)+tan^(-1)x +tan^(-1)(x+1) =tan^(-1)3x .

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Find the number of solution of the eqution tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)(3x)

The number of solutions of the equation Tan^(-1)(x-1)+Tan^(-1)(x+1)=Tan^(-1)(3x) is