Home
Class 14
MATHS
int(0)^(e^(2)){(1)/((log x))-(1)/((log x...

int_(0)^(e^(2)){(1)/((log x))-(1)/((log x)^(2))}dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

int_(2)^(e) ((1)/(ln x) - (1)/((ln x)^(2)))dx=

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int_(2)^(e)((1)/(ln x)-(1)/(ln^(2)x))dx

int_(e )^(e^(2))log x dx =

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int_(1//e)^(e) (dx)/(x(log x)^(1//3))