Home
Class 11
MATHS
" If "f(2)=4" and "f'(2)=1" then "Lt(x r...

" If "f(2)=4" and "f'(2)=1" then "Lt_(x rarr2)(xf(2)-2f(x))/(x-2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to 2) (xf(2)-2f(x))/(x-2)=

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Let f(2)=4 and f'(2)=4 then Lt_(x to 2) (xf(2)-2f(x))/(x-2)=

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)