Home
Class 11
MATHS
[" If "a!=b!=c" and if "ax+by+c=0],[bx+c...

[" If "a!=b!=c" and if "ax+by+c=0],[bx+cy+a=0cx+ay+b=0" are concurrent then "],[2^(2a)+c^(-10)*2^(b^(2))c^(-1)a^(-1)2^(c^(2)a^(-1)b^(-1))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ne b ne c and if ax+by+c=0, bx+cy+a=0, cx+ay+b=0 are concurrent then 2^(a^(2)b^(-1)c^(-1)).2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))=

If a!=b!=c, lf ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 are concurrent.Then the value of 2^(a^(2)b^(-1)c^(-1))2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))

The lines ax+by+c=0, bx+cy+a =0, cx+ay+b =0 are concurrent when-

If a+b+c!=0 ,ax+by+c=0, bx+cy+a=0, cx+ay+b=0 are concurrent then (a^(2)+b^(2)+c^(2))/(ab+bc+ca)=

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 be concurrent,then:

If the lines ax+by+c=0, bx+cy+a=0 and Cx+ay+b=0 are concurrent (a+b+cne0) then

If the lines ax + by + c = 0, bx + cy + a = 0 and cx + ay + b = 0 be concurrent, then: