Home
Class 11
MATHS
If y=e^(tan^(-1)x), show that (1+x^(2))y...

If `y=e^(tan^(-1)x)`, show that `(1+x^(2))y''+(2x-1)y'=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(tan^(-1)x) , prove that (1+x^2)y_2+(2x-1)y_1=0 .

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^(-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If logy=tan^(-1)x , show that (1+x^2)y_2+(2x-1)y_1=0 .

If y=e^(tan^^)((-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(tan^-1x), prove that (1+x^2)y_2+(2x-1)y_1=0

If y=e^"tan"^((-1)"x")), prove that (1+x^2)y_2+(2x-1)y_1=0.

If y=e^(2tan^(-1)x) , the show that : (1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))dy/dx=4y .

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0