Home
Class 12
MATHS
INDEFINITE INTEGRALS | METHOD OF INTEGRA...

INDEFINITE INTEGRALS | METHOD OF INTEGRATION | Integration of `sin^m x cos^n x` m n are integer, Examples: `sin^3x cos^4x dx`, Integration of `sin^m x cos^n x` (m+n) is negative integer, Examples: `sin^4x / cos^8x dx`, Integration by trigonometric substitution, Examples: `intx^2 / sqrt (1-x) dx`, By substitution: Theorem: If `int (ax+b)^n dx = (ax+b)^(n+1)/(a(n+1))+c`, By substitution: Theorem: If `int 1/(ax+b) dx = 1/a ln(ax+b)`, By substitution: Theorem: If `int sin (ax+b) dx = -1/a cos (ax+b)`, Integration of the form `(f, Integral of the form: `(ax+b)^n P(x) dx; (P(x)) / (ax+b)^n dx`, Examples: `intx(1-x)^n dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Integration of sin^(m)x cos^(n)xmn are integer

Integral of the form: (ax+b)^(n)P(x)dx;P(x)/((ax+b)^(n))dx

Integrate: int sin^(2) x cos^(4) x dx

Integrate: int(sin^4x-cos^4x)dx

Integrate: int cos^3 x sin^4 x dx.

Integrate ∫1/(sin^4x + cos^4x) dx

Integrate: int dx/(3 sin x - 4 cos x )

Integrate: int sin x/(sin x - cos x ) dx

Integrate- int(sin x+cos x)^(2)dx

Integrate : (i) int sin^(3) x cos^(5) x dx