Home
Class 7
MATHS
((4x-3)/(2x+1))-10((2x+1)/(4x-3))=3,x!=-...

((4x-3)/(2x+1))-10((2x+1)/(4x-3))=3,x!=-(1)/(2),(3)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: ((4x-3)/(2x+1))-10((2x+1)/(4x-3))=3,xne(-1)/(2),(3)/(4)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

3sin^(-1)x=sin(3x-4x^(3)),x in[-(1)/(2),(1)/(2)]

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

The value of lim_(x rarr oo)(2x^((1)/(2))+3x^((1)/(3))+4x^((1)/(4))+......+nx^((1)/(n)))/((2x-3)^((1)/(2))+(2x-3)^((1)/(3))+......+(2x-3)^((1)/(n))) is equal to

The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 is (1) 120 (2) 210 (3) 310 (4) 4