Home
Class 12
MATHS
यदि x=a[cost+1/2logtan^(2)t/2] और y=asin...

यदि `x=a[cost+1/2logtan^(2)t/2]` और `y=asint,` तब `(dy)/(dx)` ज्ञात कीजिए।

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

x=a(cost+logtan(t/2)) , y=asint find dx/dt&dy/dt .

If x=a(cost+logtant//2),y=asint, then (dy)/(dx)=