Home
Class 14
MATHS
If a b c=1, show that 1/(1+a+b^(-1))+1/(...

If `a b c=1,` show that `1/(1+a+b^(-1))+1/(1+b+c^(-1))+1/(1+c+a^(-1))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c)+(1)/(1+c+a^(-1))=1

If a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1 , then show that 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1 .

Prove that 1/(a(a-b)(a-c))+1/(b(b-c)(b-a))+1/(c(c-a)(c-b))=1/(abc)

If a^2/(b+c)=b^2/(c+a)=c^2/(a+b)=1 , show that 1/(1+a)+1/(1+b)+1/(1+c)=1

Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

If |(a,1,1),(1,b,1),(1,1,c)|=0 then show that 1/(1-a)+1/(1-b)+1/(1-c)=1

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

If a=-10,b=1 and c=1 , Show that a -: (b+c) != (a -:b) + (a-:c)

Show that: 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+\ x^(a-c))=1