Home
Class 7
MATHS
" Show that : "(3x+7)^(2)-84x=(3x-7)^(2)...

" Show that : "(3x+7)^(2)-84x=(3x-7)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : (3x+7)^2-84 x=(3x-7)^2 (9a-5b)^2+180 a b=(9a+5b)^2 ((4m)/3-(3n)/4)^2+2m n=(16 m^2)/9+(9n^2)/(16)

Show that. (i) (3x+7)^2-84x=(3x-7)^2 (ii) (9p-5q)^2+180pq=(9p+5q)^2 (iii) (4/3(m)-3/4(n))^2+2mn=16/9(m^2)+9/16(n^2) (iv) (4pq+3q)^2-(4pq-3q)^2=48pq^2 (v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

Show that.(i) (3x+7)2-84x=(3x-7)2( ii) (9p-5q)2+180pq=(9p+5q)2( iii) (43(m)-34(n))2+2mn=169(m2)+916(n2)( iv )(4pq+3q)2-(4pq-3q)2=48pq2(v)(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

Solve for x : (x+ 3)/(x + 2) = (3x -7)/(2x - 3) , x =2 , (3)/(2)

(2x+7) (3x+2)

Find the product (x^(2)-3x+7)(2x+3)

simplify: (3x+7)/(2x^(2)+3x-2)

Find the values of x such that f(x)=2x^(3)-15x^(2)-84x-7 is a decreasing function.

Show that (x +4) ,(x-3) and (x-7) are factors of x ^(3) - 6x ^(2) - 19 x + 84.

Show that (x +4) ,(x-3) and (x-7) are factors of x ^(3) - 6x ^(2) - 19 x + 84.