Home
Class 6
MATHS
" (8) If "y log x=x-y," prove that "(dy)...

" (8) If "y log x=x-y," prove that "(dy)/(dx)=(log x)/((1+log x)^(2))" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))