Home
Class 12
MATHS
For x ge 0, the smallest value of funcat...

For `x ge 0`, the smallest value of funcation
`f(x) = (4x^(2) + 8x + 13)/(6(1 + x))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For x>=0, the smallest value of the function f(x)=(4x^(2)+8x+13)/(6(1+x)), is

For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)), is

For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)), is

For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)), is

For xge 0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)) , is ________.

For xge 0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1+x)) , is ________.

The function f(x)=2+4x^(2)+6x^(4)+8x^(6) has

The function f(x)=2+4x^(2)+6x^(4)+8x^(6) has :

Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8))>1

Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8) gt 1 .