Home
Class 12
MATHS
[a(1)x+b(1)y+c(1)z=d(1)],[a(2)x+b(2)y+c(...

[a_(1)x+b_(1)y+c_(1)z=d_(1)],[a_(2)x+b_(2)y+c_(2)z=d_(2)],[a_(3)x+b_(3)y+c_(3)z=d_(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of 2x+y+z=1,x-2y-3z=1,3x+2y+4z=5 is

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of the system 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 is

Represent the following equations in matrix form: a_(1)x+b_(1)y+c_(1)z=k_(1) a_(2)x+b_(2)y+c_(2)z=k_(2) a_(3)x+b_(3)y+c_(3)z=k_(3)

Consider the system of linear equations a_(1)x+b_(1)y+ c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+ c_(2)z+d_(2)= 0 , a_(3)x+b_(3)y +c_(3)z+d_(3)=0 , Let us denote by Delta (a,b,c) the determinant |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}| , if Delta (a,b,c) # 0, then the value of x in the unique solution of the above equations is

Consider the system of linear equations , a_(1)x+b_(1)y+c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+c_(2)z+d_(2)=0 , a_(3)x+b_(3)y+c_(3)2+d_(3)=0 Let us denote by Delta(a,b,c) the determinant |[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(2),c_(3)]| if Delta(a,b,c)!=0, then the value of x in the unique solution of the above equations is

Represent the following linear equations in matrix form: a_(1)x+b_(1)y+c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+c_(2)z+d_(2)=0 and a_(3)x+b_(3)y_+c_(3)z+d_(3)=0

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

The Cartesian equation of the sides BC,CA, AB of a triangle are respectively u_(1)=a_(1)x+b_(1)y+c_(1)=0, u_(2)=a_(2)x+b_(2)y+c_(2)=0 and u_(3)=a_(3)x+b_(3)y+c_(3)=0 . Show that the equation of the straight line through A bisectig the side bar(BC) is (u_(3))/(a_(3)b_(1)-a_(1)b_(3))=(u_(2))/(a_(1)b_(2)-a_(2)b_(1))