Home
Class 12
MATHS
[" 1.Using properties of determinants pr...

[" 1.Using properties of determinants prove that "],[|[1,1,1],[a,b,c],[a^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)]

Promotional Banner

Similar Questions

Explore conceptually related problems

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants, prove that |(1,a,a^(3)),(1,b,b^(3)),(1,c,c^(3))| = (a-b)(b-c)(c-a)(a+b+c) .

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)