Home
Class 12
MATHS
In sinA=sinB and cos A=cos B, then prove...

In `sinA=sinB` and `cos A=cos B`, then prove that `sin(A-B)/(2)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

If sinA=sinB and cosA=cosB , then prove that sin((A-B)/2)=0

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If p=(sinA)/(sinB) and q=(cos A)/(cos B)

sin(A-B)=sinA cos B-cosA sinB