Home
Class 12
MATHS
If the derivative of f(x) at x = a b...

If the derivative of `f(x)` at `x = a ` be f'(a) show that
` lim_(x to a ) (xf(a)-af(x))/(x-a) = f(a) -af'(a)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-(a)f'(a) .

If the derivatives of f(x) at x=a is f'(a) ,then show that lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-af'(a)

If f(x) is derivable at x = a,show that lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-af'(a)

If f'(c) is the -derivative of f(x) at x= c,then show that lim_(xrarrc)(xf(c)-cf(x))/(x-c)=f(c)-cf'(c)

If f is derivable at x =a,then lim_(xto a )( (xf(a) -af( x))/(x-a) )

If f'(a)=2 and f(a)=4 then lim_(xtoa)(xf(a)-af(x))/(x-a) equals to

If f(x) is differentiable at x=a then show that lim_(xrarr0)(x^2f(a)-a^2f(x))/(x-a)=2af(a)-a^2f^1(a)

Write the value of (lim)_(x rarr a)(xf(a)-af(x))/(x-a)

If f'(a) = 2 and f(a) = 4 then Lim_(x to a) (xf(a) + af(x))/(x - a) equals