Home
Class 12
MATHS
If inte^(sinx)[(xcos^3x-sinx)/(cos^2x)]d...

If `inte^(sinx)[(xcos^3x-sinx)/(cos^2x)]dx=e^(sinx)*f(x)+c`, where c is constant of integration, then f(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

Evaluate: int e^(sinx)((xcos^3x-sinx)/(cos^2x))dx

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be