Home
Class 11
MATHS
" For a complex number "z" ,the minimum ...

" For a complex number "z" ,the minimum value of "|z|+|z-cos theta-i sin theta|," where "i=sqrt(-1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number z,the minimum value of |z|+|z-cos alpha-i sin alpha| is

For a complex number z the minimum value of |z|+|z-cos alpha-i sin alpha| (where i=sqrt(-1)) is:

For a complex number z the minimum value of |z|+|z-cos alpha-i sin alpha| (where i=sqrt-1 ) is:

z is a complex number. The minimum value of |z | + I z - 2| is

What is the modulus of the complex number (cos theta+i sin theta)/(cos theta-i sin theta) where i=sqrt(-1) ?

If z = 1 - cos theta + i sin theta , then |z| =

If z = (1)/(1 - cos theta - i sin theta), the Re (z)=

The real part of z = (1)/(1-cos theta + i sin theta) is

Which of the following is true for z=(3+2i sin theta)//(1-2 i sin theta) , where i=sqrt(-1) ?