Home
Class 11
MATHS
" II.1.Show that "|[bc,b+c,1],[ca,c+a,1]...

" II.1.Show that "|[bc,b+c,1],[ca,c+a,1],[ab,a+b,1]|=(a-b)(b-c)(c-a)" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1,1,1],[a,b,c],[bc,ca,ab]|=(a-b)(b-c)(c-a)

|[1, 1, 1], [a, b, c], [bc, ca, ab]| = (a-b)(b-c)(c-a)

det[[bc,b+c,1ca,c+a,1ab,a+b,1]]=

Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

Show that abs [[1,a,bc],[1,b,ac],[1,c,ab]]=(a-b)(b-c)(c-a)

|[1,a, bc] ,[1, b, ca], [1, c, ab]| = (a-b)(b-c)(c-a)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)