Home
Class 8
MATHS
[a(1)(4)/(9)],[" xx."quad (1(3)/(10))^(3...

[a_(1)(4)/(9)],[" xx."quad (1(3)/(10))^(3)=?]

Promotional Banner

Similar Questions

Explore conceptually related problems

A geometric sequence has four positive terms a_(1),a_(2),a_(3),a_(4). If (a_(3))/(a_(1))=9 and a_(1)+a_(2)=(4)/(3) then a_(4) equals

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

If {[([3,1,2],[8,9,5],[1,1,3])([1,3,3],[3,2,7],[3,7,9])([3,8,1],[1,9,1],[2,5,3])])}^(2)=([a_(1),a_(2),a_(3)],[b_(1),b_(2),b_(3)],[c_(1),c_(2),c_(3)]) then the value of |a_(2)-b_(1)|+|a_(3)-c_(1)|+|b_(3)-c_(2)| is

The number of n on negative integral solutions to the system of equations a_(1)+a_(2)+a_(3)+a_(4)+a_(5)=25 and a_(1)+a_(2)+a_(3)=10 are

Let a_(1),a_(2),a_(3),?a_(10) are in G.P.if (a_(3))/(a_(1))=25 then (a_(9))/(a_(5)) is equal to (A)5^(4)(B)4.5^(4)(C)4.5^(3)(D)5^(3)

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in