Home
Class 11
MATHS
In triangle A B C ,a , b , c are the le...

In triangle `A B C ,a , b , c` are the lengths of its sides and `A , B ,C` are the angles of triangle `A B Cdot` The correct relation is given by (a)`(b-c)sin((B-C)/2)=acosA/2` (b) `(b-c)cos(A/2)=as in(B-C)/2` (c)`(b+c)sin((B+C)/2)=acosA/2` (d)`(b-c)cos(A/2)=2asin(B+C)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

If a ,b ,c denote the lengths of the sides of a triangle opposite to angles A ,B ,C respectively of a A B C , then the correct relation among a ,b , cA ,Ba n dC is given by (b+c)sin((B+C)/2)=acos b. (b-c)cos(A/2)=asin((B-C)/2) c. (b-c)cos(A/2)=2asin((B-C)/2) d. (b-c)sin((B-C)/2)="a c o s"A/2

If a,b,c are sides opposte to the angles A,B , C then which of the following is correct (1)(b+c)cos((A)/(2))=a sin((B+C)/(2))(2)(b+c)cos((B+C)/(2))=a sin((A)/(2))(3)(b-c)cos((B-C)/(2))=a(cos A)/(2)(4)(b-c)cos((A)/(2))=a sin((B-C)/(2))

If A, B, C are interior angle of triangle ABC then show that sin ((A+B)/2) + cos (( A+ B)/2) = cos (C/2) + sin (C/2)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan""(B+C)/(2) +cos""(A+B)/(2) *csc""(C)/(2)=