Home
Class 10
MATHS
sum(varepsilon)^(" arfur ")(dy)/(dx)+sqr...

sum_(varepsilon)^(" arfur ")(dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of (dy)/(dx) + (sqrt(1 - y^(2)))/(sqrt(1 - x^(2))) = 0 is

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

General solution of (dy)/(dx)-(sqrt(1-y^(2)))/(sqrt(1-x^(2)))=0 is

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .