Home
Class 12
MATHS
यदि sin^(4) alpha + 4cos^(4) beta +2= 4...

यदि `sin^(4) alpha + 4cos^(4) beta +2= 4 sqrt2 sin alpha cos beta: alpha, beta in [0,pi]` तो `cos (alpha + beta) - cos (alpha - beta)` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :

"Show that :" 2 sin^(2) beta + 4 cos ( alpha + beta) sin alpha sin beta + cos2 (alpha + beta) = cos2 alpha

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

Ifsin^(4)alpha+cos^(4)beta+2=4sin alpha cos beta,0<=alpha,beta<=(pi)/(2) then find the value of (sin alpha+cos beta)