Home
Class 12
MATHS
[|[a^(2),b^(2),c^(2)],[(a+lambda)^(2),(b...

[|[a^(2),b^(2),c^(2)],[(a+lambda)^(2),(b+lambda)^(2),(c+lambda)^(2)],[(a-lambda)^(2),(b-lambda)^(2),(c-lambda)^(2)]|=k lambda|[a^(2),b^(2),c^(2)],[a,b,c],[1,1,1]|],[[" (a) "4 lambda abc," (b) "-4 lambda abc],[" (c) "4 lambda^(2)," (d) "-4 lambda^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a^(2), b^(2), c^(2)),((a+lambda)^(2), (b+lambda)^(2), (c+lambda)^(2)),((a-lambda)^(2), (b-lambda)^(2), (c-lambda)^(2))|=klambda|(a^(2), b^(2),c^(2)),(a,b,c),(1,1,1)|,lambda ne 0 then k is equal to

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to :

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are in

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))