Home
Class 12
MATHS
If A+B+C=pi, express S=sin3A+sin3B+sin3C...

If `A+B+C=pi,` express `S=sin3A+sin3B+sin3C` as a product of three trigonometric ratios. If `S=0,` Show that at least one of the angles is `60^@.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B-C=3 pi, then sin A+sin B-sin C is equal to -

IfA+B-C=3 pi then sin A+sin B-sin C is equal to

Show that suma^3 sin(B-C) =0

In a right triangle ABC right angled at B if sin A=(3)/(5), find all the six trigonometric ratios of /_C

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If B + C = 60^@ , show that : sin (120^@- B) = sin (120^@ -C) .

If A+B+C=180^0,\ then s e c A(cos B cos C-sin B sin C) is equal to:

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

If A+B+C= 2S , " then " sin (S-A) sin(S-B) + sinS sin(S-C)=