Home
Class 12
MATHS
Matrices a and B satisfy AB=B^(-1), wher...

Matrices a and B satisfy `AB=B^(-1)`, where `B=[(2,-1),(2,0)]`. Find
(i) without finding `B^(-1)`, the value of K for which
`KA-2B^(-1)+I=O`.
(ii) without finding `A^(-1)`, the matrix X satifying `A^(-1) XA=B`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Matrices a and B satisfy AB=B^(-1) , where B=[(2,-1),(2,0)] . Find (i) without finding B^(-1) , the value of K for which KA-2B^(-1)+I=O . (ii) without finding A^(-1) , find the matrix X satifying A^(-1) XA=B .

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .

If A = [(2,0),(0,1)] and B = [(1),(2)] then find the matrix X such that A^(-1) X = B

Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A .

if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.