Home
Class 12
MATHS
The solution set of the inequality sqrt...

The solution set of the inequality ` sqrt(5-2sinx) geq 6 sinx -1` is `[2npi,2npi+theta_1]uu[2npi+theta_2, 2npi+2pi)` then find the value of `(theta_1+theta_2)/pi` given that `theta_1`is an acute angle and `theta_2` is an obtuse angle`

Promotional Banner

Similar Questions

Explore conceptually related problems

If pi

If 0

Find the value of (1)/(tan theta)+(sin theta)/(1+cos theta) if 1+cot^(2)theta=(sqrt(3+2sqrt(2))-1)^(2) ( theta is an acute angle)

Find the value of (1)/(tan theta)+(sin theta)/(1+cos theta) if 1+cot^(2)theta=(sqrt(3+2sqrt(2))-1)^(2) ( theta is an acute angle)

If theta is a positive acute angle and tan 2theta tan 3 theta =1 , then the value of (2 cos^2""(5theta)/2-1) is

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

The sum of all the solutions of cottheta=sin2theta(theta!=npi, n integer) , 0lt=thetalt=pi, is

Solution of the equation sin(sqrt(1+sin2theta))=sintheta+costhetai s(n in Z) npi-pi/4 (b) npi+pi/(12) (c) npi+pi/6 (d) none of these

Prove that: tan^2theta=tan^2alpha ,theta=npi+-alpha,n in Z