Home
Class 12
MATHS
If x=3tant and y=3sect then find (d^2y)/...

If `x=3tant` and `y=3sect` then find `(d^2y)/(dx^2)` at `x=(pi)/(4)` (a) `3` (b) `(1)/(6sqrt2)` (c) `1` (d) `(1)/(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is

If (sin x)(cos y)=(1)/(2), then (d^(2)y)/(dx^(2)) at ((pi)/(4),(pi)/(4)) is (a)-4(b)-2(c)-6(d)0 at ((pi)/(4),(pi)/(4))

x^(2)+y^(2)-4x-6y+3=0 find (dy)/(dx) at (1,6)

If x=sect+tant and y=sect - tant , where t is a parameter, then the value of (dy)/(dx) when x=(1)/(sqrt3) is

If y=|cos x|+|sin x|, then (dy)/(dx)atx=(2 pi)/(3) is (1-sqrt(3))/(2)(b)0(c)(1)/(2)(sqrt(3)-1) (d) none of these

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

find order and degree (d^(2)y)/(dx^(2)) + (dy)/(dx) + x= sqrt(1+ (d^(3)y)/(dx^(3))

If x=a(1-cos^(3)theta),y=as in^(3)theta, prove that (d^(2)y)/(dx^(2))=(32)/(27a) at theta=(pi)/(6)

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2))=-(1)/(t^(2))(b)(1)/(2at^(3))(c)-(1)/(t^(3))(d)-(1)/(2at^(3))

If 2x+3y=5 and 3x+2y=10 then x-y= (a) 3 (b) 4 (c) 5 (d) 6