Home
Class 12
MATHS
Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-...

Matrix `[[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]]` is invertible.
(1) only id `t=pi/2`
(2) only `y=pi`
(3) `t in R`
(4) `t !in R`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

int e^(t)(cost-sin t)dt

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"

x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

Let z=e^(xy^(2)),x=t cos t,y=t sint . Find (dz)/(dt) at t=pi/2

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

If x=e^(t)cost and y=e^(t)sint , then what is (dx)/(dy) at t=0 equal to?

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If (1+sint)(1+cost)=5/4dot Find the value (1-sint)(1-cos t)