Home
Class 10
MATHS
विभाजन एल्गोरिथ्म का प्रयोग करके, निम्न...

विभाजन एल्गोरिथ्म का प्रयोग करके, निम्न में p(x) को g(x) से भाग देने पर भागफल एवं शेषफल ज्ञात कीजिए- `p(x) = x^(4) - 5x + 6, " " g(x) = 2 - x^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

p(x) = x^(2) + 5x + 6 then zeros of p(x) = …………..

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)

Check whether p(x) is a multiple of g(x) or not. p(x) = x^(3) -5x^(2) + 4x -3, g(x) = x-2

Divide p(x) by g(x) and find the quotient and remainder : p(x)=x^(4)-5x+6, g(x)=2-x^(2)

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and reminder in each of the following. (iii) p(x) = x^(4) - 5x +6 , g(x) = 2 - x^(2) .

In each of the following cases (Q.9-12), find whether g(x) is a factor of p(x) : p(x)=x^(2)-5x+6, " " g(x)=x-2

Devide p(x) by g(x) in each of the following cases and verify division algorithm: p(x)= x^(3)+4x^(2)-5x+6, g(x)= x+1